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ABSTRACT

A perturbation treatment provides a quantitative solution
for inhomogeneous ferrite waveguides structures. Theory and
experiments for the differential phase shift in single and double
toroidal phase shifters agree within 5% over a broadband.
Treatment of higher order modes, impedances and extension to
other devices are outlined.

INTRODUCTION

Exact solutions for double slab ferrite phase shifters (1)
have been used to analyze inhomogeneous structures. The

invention of the toroidal phase shifter (2) made these idealized

solutions obsolete. A new perturbation formalism taking into
account the dielectric and magnetic inhomogeneities sequential-
ly yields precise explicit expressions for the differential phase
shift of single and double toroidal phase shifters. The formal-
ism has been extended to account for the coupling of higher
modes over a broadband.

PERTURBATION PROCEDURE

Starting with the perturbation expression "Microwave
Ferrites and Ferrimagnetics" by Lax and Button (3) the actual
fields are evaluated by taking into account the depolarizing and
demagnetizing factors. The susceptibilities (3) are then
expressed as effective quantities and the fields as unperturbed
orthonormal LSE and LSM modes of an equivalent dielectri-
cally loaded waveguide. In Figure 1 the unmagnetized ferrite
and dielectric insert are treated as a monolithic slab whose
effective dielectric constant accounts for the geometry and the
appropriate depolarizing factor N as follows:
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The dimensions A, 8§, and o are indicated in Figure 1 and
Ae=e,~e,, is the difference of relative dielectric constants
between the ferrite and dielectric insert. Then the transcenden-
tal equation for the fundamental TE, (or LSE,) mode is given
by:
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These equations are solved for k,, k,, and hence p2=kZ, +w?/c?.
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Using these values in the perturbation formula the appropriate
functions are evaluated over the magnetized toroidal ferrite
window frame configuration. Only the vertically polarized

portions contribute to the differential phase shiftAp=p,-f_
for the opposite directions of propagation or reversal of
magnetization. AP is given by:
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A similar procedure for the double toroid separated by a
dielectric slab yields an explicit expression of comparable
complexity in terms of the pertinent parameters. Both expres-
sions allow more flexibility and ease of computation than the
ersatz idealized triple slab transcendental equation. The
comparison between the perturbation and exact equivalent
solutions with experiment shows the former to be superior as
indicated in Figure 2 over a broadband of frequencies. Figure
3 shows comparison of our theory for another single toroid and
a double toroid over comparable bandwidth with good results.

HIGHER ORDER MODES
Higher order modes can be excited when their cut-off

frequencies occur in the operating band. Inhomogeneities and
off-diagonal tensor components can couple these to the
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dominant mode. Taking a linear combination of these modes
and applying the perturbation formula to each mode as the
dominant mode leads to a secular equation which can be solved
for the propagation constant of all the perturbed modes. The
secular equation contains matrix elements in which the off-
diagonal components indicate the degree of coupling between
the various waveguide modes. These are integrals evaluated
in terms of the orthonormal functions and the dielectric and
magnetic perturbations as before but between separate modes.
From the solution of the secular equation the relative ampli-
tudes of each mode can be determined. The secular equation
can be expanded about each mode to second order neglecting

higher order products of the matrix elements to yield a valuef,

where i is the dominant mode corrected for the coupling to
other modes
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The simplest example of the procedure is to consider a square
waveguide with a longitudinally magnetized ferrite toroid
surrounding an electro-optical crystal used as a magnetically
tunable modulator (4). Our procedure yields the propagation
constant for the two counter rotating modes as follows:

p+=P(1+0.3xT:02x%) (5)

where the numerical factors are for specific geometrical
dimensions, the effective susceptibilities in terms of demagne-

tizing factors and B for an equivalent completely filled square
guide with an effective dielectric constant evaluated from the
perturbation formula as in Equation (1). Details are presented
in reference (4).
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Figure 1
Toroidal ferrite tube with dielectric insert in rectangular
waveguide. Magnetization indicated by arrows.
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Figure 2

Comparison of theory, experiment and 3 slab approximation
for single toroidal phase shifter.
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Figure 3
Comparsion of theory and experiment for single and double
broadband phase shifters.

CONCLUSIONS

The use of the perturbation procedure represents a new
technique for solving problems in an inhomogeneously loaded
waveguide (or cavity) for which exact solutions are not



possible. The results yield quite accurate values when the
geometry and associated depolarizing and demagnetizing fac-
tors are properly accounted for. Since the fields are evaluated
even to higher order when the coupling of modes are calculat-
ed, the impedance of the waveguide can be obtained from the
line integrals of equivalent voltages and currents from the total
electric and magnetic fields using the voltage-current relations
or from the Poynting vector.
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